https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:19866 Wed 11 Apr 2018 15:06:19 AEST ]]> Mechanisms of phloem unloading: shaped by cellular pathways, their conductances and sink function https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:33601 In planta studies of phloem unloading encounter substantial technical challenges in accessing phloem within a meshwork of vascular/ground tissues. Thus, current understanding of phloem-unloading mechanisms largely has been deduced from indirect experimental measures or modelling. Here we highlight recent advances in understanding phloem unloading mechanisms and identify where important knowledge gaps remain.]]> Thu 22 Nov 2018 16:43:25 AEDT ]]> Sucrose transporter localization and function in phloem unloading in developing stems https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:33602 Sorghum bicolor SUTs SbSUT1 and SbSUT5 were characterized by determining their transport properties heterologously expressed in yeast or Xenopus laevis oocytes, and their in planta cellular and subcellular localization. The plasma membrane-localized SbSUT1 and SbSUT5 exhibited a strong selectivity for Suc and high Suc affinities in X. laevis oocytes at pH 5—SbSUT1, 6.3 ± 0.7 mm, and SbSUT5, 2.4 ± 0.5 mm Suc. The Suc affinity of SbSUT1 was dependent on membrane potential and pH. In contrast, SbSUT5 Suc affinity was independent of membrane potential and pH but supported high transport rates at neutral pH. Suc transport by the tonoplast localized SbSUT4 could not be detected using yeast or X. laevis oocytes. Across internode development, SUTs, other than SbSUT4, were immunolocalized to sieve elements, while for elongating and recently elongated internodes, SUTs also were detected in storage parenchyma cells. We conclude that apoplasmic Suc unloading from de-energized protophloem sieve elements in meristematic zones may be mediated by reversal of SbSUT1 and/or by uniporting SWEETs. Storage parenchyma localized SbSUT1 and SbSUT5 may accumulate Suc from the stem apoplasms of elongating and recently elongated internodes, whereas SbSUT4 may function to release Suc from vacuoles. Transiting from an apoplasmic to symplasmic unloading pathway as the stem matures, SbSUT1 and SbSUT5 increasingly function in Suc retrieval into metaphloem sieve elements to maintain a high turgor to drive symplasmic unloading by bulk flow.]]> Thu 22 Nov 2018 16:43:24 AEDT ]]> Contribution of sucrose transporters to phloem unloading within Sorghum bicolor stem internodes https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:31279 Sorghum bicolor, was evaluated during different stages of internode development. Transcript levels and functional properties of selected key transporters were measured, with both cellular and subcellular localization determined.]]> Thu 22 Nov 2018 16:23:38 AEDT ]]> Cellular pathways of source leaf phloem loading and phloem unloading in developing stems of Sorghum bicolor in relation to stem sucrose storage https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:26365 Sorghum bicolor(L.) Moench were deduced from histochemical determinations of cell wall composition and from the relative radial mobilities of fluorescent tracer dyes exiting vascular pipelines. The cell walls of small vascular bundles in source leaves, the predicted site of phloem loading, contained minimal quantities of lignin and suberin. A phloem-loaded symplasmic tracer, carboxyfluorescein, was retained within the collection phloem, indicating symplasmic isolation. Together, these findings suggested that phloem loading in source leaves occurs apoplasmically. Lignin was restricted to the walls of protoxylem elements located in meristematic, elongating and recently elongated regions of the stem. The apoplasmic tracer, 8-hydroxypyrene-1,3,6-trisulfonic acid, moved radially from the transpiration stream, consistent with phloem and storage parenchyma cells being interconnected by an apoplasmic pathway. The major phase of sucrose accumulation in mature stems coincided with heavy lignification and suberisation of sclerenchyma sheath cell walls restricting apoplasmic tracer movement from the phloem to storage parenchyma apoplasms. Phloem unloading at this stage of stem development followed a symplasmic route linking sieve elements and storage parenchyma cells, as confirmed by the phloem-delivered symplasmic tracer, 8-hydroxypyrene-1,3,6-trisulfonic acid, moving radially from the stem phloem.]]> Sat 24 Mar 2018 07:33:08 AEDT ]]>